Comparison of Particle Filters for Positioning

Duane Petrovich & Robert Piché
Tampere University of Technology, Finland
How to locate mobile devices using signals from satellites and cellular networks?

• Mathematical Formulation

 motion model: \[x_k = f_{k-1}(x_{k-1}) + v_{k-1} \]

 measurement model: \[y_k = h_k(x_k) + w_k \]
How to locate mobile devices using signals from satellites and cellular networks?

- **Mathematical Formulation**

 motion model: \(x_k = f_{k-1}(x_{k-1}) + v_{k-1} \)

 measurement model: \(y_k = h_k(x_k) + w_k \)

- **Recursive Bayesian Filter**

 \[
 p(x_k | y_{1:k-1}) = \int p(x_k | x_{k-1}) p(x_{k-1} | y_{1:k-1}) \, dx_{k-1}
 \]

 \[
 p(x_k | y_{1:k}) = \frac{p(y_k | x_k) p(x_k | y_{1:k-1})}{\int p(y_k | x_k) p(x_k | y_{1:k-1}) \, dx_k}
 \]
There are many ways to approximate posterior distribution
There are many ways to approximate posterior distribution.
There are many ways to approximate posterior distribution
How to compare the full distribution?

Position Estimate = Mean of Posterior
Use two-sample chi-squared test statistic to compare distributions

Linear-Gaussian Scenario,
\(\sigma_{\text{meas}} = 1 \text{ m}, \) time step \(k = 180 \)

\[
\chi^2 \\
\text{mean } \pm \text{ std } = 63 \pm 11.2
\]

\[
\text{mean } \pm \text{ std } = 276 \pm 50.6
\]
Use two-sample chi-squared test statistic to compare distributions

Linear-Gaussian Scenario,
\(\sigma_{\text{meas}} = 1 \text{ m} \), time step \(k = 180 \)

\[
\chi^2 \\
\text{mean} \pm \text{std} = 63 \pm 11.2
\]

\[
\text{mean} \pm \text{std} = 276 \pm 50.6
\]

\[
\text{mean} \pm \text{std} = 66 \pm 11.75
\]
Use adaptive-binning for efficiency

The test is used to compare nonlinear filters

Nonlinear Scenario, range measurements, 3 base stations

500 m
The test is used to compare nonlinear filters.

Nonlinear Scenario, range measurements, 3 base stations.

Statistic mean ± std

<table>
<thead>
<tr>
<th>σ_{meas}</th>
<th>χ^2</th>
<th>SIR1</th>
<th>SIR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 m</td>
<td>63 ± 11.2</td>
<td>1936 ± 1239</td>
<td>1763 ± 1951</td>
</tr>
<tr>
<td>5 m</td>
<td>63 ± 11.2</td>
<td>4429 ± 1190</td>
<td>2879 ± 737</td>
</tr>
<tr>
<td>1 m</td>
<td>63 ± 11.2</td>
<td>4016 ± 2439</td>
<td>1165 ± 677</td>
</tr>
</tbody>
</table>